Poststatin, a New Inhibitor of Prolyl Endopeptidase

VII. N-Cycloalkylamide Analogues

Makoto Tsuda, Yasuhiko Muraoka, Machiko Nagai, Takaaki Aoyagi ${ }^{\dagger}$ and Tomio Takeuchi
Institute of Microbial Chemistry, 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141, Japan
${ }^{\dagger}$ Department of Hygienic Chemistry, Showa College of Pharmaceutical Sciences, 3-Chome Higashitamagawagakuen, Machida-shi, Tokyo 194, Japan

(Received for publication March 28, 1996)

Abstract

Poststatin analogues containing (S)-2-oxo-2-(2-pyrrolidinyl)acetyl moiety in P_{1} were synthesized and examined for their inhibitory activity against prolyl endopeptidase and cathepsin B in vitro. Introduction of non-peptidyl cycloalkylamine component in P_{1}^{\prime} was effective and P_{3}-acyl groups must be widely modifiable for prolyl endopeptidase inhibition. Acyl-L-phenylalanyl-(S)-2-oxo-2-(2-pyrrolidinyl)acetyl-cycloalkylamide type compounds showed IC_{50} value of nano to subnano g / ml as prolyl endopeptidase inhibitor and were shown no significant inhibitory activities against cathepsin B , a cysteine protease.

Prolyl endopeptidase (PEP) [EC 3.4.21.26] is a serine protease ${ }^{1)}$ that is highly active in the brain and degrades proline-containing oligopeptides such as oxytocin, neurotensin, substance P, thyrotropin releasing hormone, bradykinin, and angiotensin $\mathrm{II}^{2 \sim 7}$. PEP also degrades vasopressin which has been suggested to play an important role in learning and memory ${ }^{8 \sim 10)}$. Moreover, PEP may be involved in processing the C-terminal portion of the amyloid precursor protein in the Alzheimer's disease ${ }^{11)}$.

Recently, many potent inhibitors such as benzyloxy-carbonyl(Z)-Gly-Pro- $\mathrm{CH}_{2} \mathrm{Cl}^{1)}$, Z-Pro-prolinal ${ }^{12)}$, 1-(N -(4-phenylbutyryl)-Pro)-pyrrolidine ${ }^{13)}$, and related compounds ${ }^{13 \sim 19)}$ have been studied, and peptidyl aldehydes and pyrrolidine derivatives have been reported to ameliorate the experimental amnesia induced by scopolamine in rats ${ }^{13,16)}$.

In the course of our study, poststatin (PST) which was a potent inhibitor of PEP with the structure of L-Val-L-Val-(S)-3-amino-2-oxovaleryl-d-Leu-L-Val, was isolated from a culture filtrate of Streptomyces viridochromogenes MH534-30F3 ${ }^{20 \sim 22)}$, and many PST analogues were synthesized for the structure-activity relationships ${ }^{23)}$. In the preceding paper we have designed PST analogues containing (S)-2-oxo-2-(2-pyrrolidinyl)acetyl (ProCO) moiety in the P_{1}, which was very effective and selective for PEP inhibitor. We have also found P_{1}^{\prime} in the ProCO containing inhibitor was able to substitute the non-peptidyl cyclohexyl (cHx) amine component without significant loss of inhibitory activity ${ }^{24)}$. To find
more potent analogues for PEP inhibitor, we modified not only P_{1}^{\prime} but P_{2} and P_{3} of the Z-L-Phe-ProCO-NHcHx as a lead compound. In this paper, we described the synthesis of new cycloalkylamide-containing PEP inhibitors and their inhibitory activity contrasted with cathepsin B in vitro.

Chemistry

The synthetic route is outlined in Scheme 1. Starting N-Boc-($R S$)-2-hydroxy-2-((S)-2-pyrrolidinyl)acetic acid was prepared from Z-L-proline in five steps according to the procedure described in the previous paper ${ }^{24)}$. Coupling reaction of acid component with amine component was performed by 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide(EDC)-1-hydroxybenzotriazole (HOBt) method or acid chloride method. Deprotection of temporary protective group was performed by acid treatment for Boc-group and hydrogenation for Z-group. All of the epimeric mixture containing hydroxyl group indicated satisfactory FAB-MS and/or NMR spectra. Oxidation of hydroxyl group to ketone was performed by the Pfitzner-Moffatt ${ }^{25)}$ or the Albright-Goldman ${ }^{26)}$ method.

Results and Discussion

The results obtained are summarized in Table 1. The influence of \mathbf{P}_{1}^{\prime} cycloalkylamine component was clearly demonstrated as following in comparison with aldehydetype inhibitor. Compound 2 showed about 12 times as much active against PEP as compound 1 (ONO-1603,

Scheme 1.

a: $\mathrm{EDC} \cdot \mathrm{HCl}, \mathrm{HOBt},\left(\mathrm{Et}_{3} \mathrm{~N}\right.$, in case of TFA or HCl salt as an amine component), b: TFA or 4 NHCl -dioxane, c : TFA or $\mathrm{H}_{2}, \mathrm{Pd}$-black, d: EDC $\cdot \mathrm{HCl}, \mathrm{DMSO}$, pyridinium trifluoroacetate or $\mathrm{Ac}_{2} \mathrm{O}$, DMSO.

PEP inhibitor which is in phase II clinical trials ${ }^{277}$). Similarly compound 7 showed about 170 times more potent than compound $\mathbf{3}$ for PEP inhibition.

The systematic change of ring size at P_{1}^{\prime} cycloalkylamine component indicated that all these components (cyclopropylamine; 5, cyclopentylamine; 6, cyclohexylamine; 7, cycloheptylamine; 8, and cyclooctylamine; 9) were very effective for PEP inhibition in contrast with cyclic amine (pyrrolidine; 4). Among them cHx ring was
most effective.
To enhance the inhibitory activity against PEP, N protected amino acid residue at the $\mathrm{P}_{3}-\mathrm{P}_{2}$ was widely studied. Although $\mathrm{P}_{2}-\mathrm{Val}$ was more potent than Phe or β-cyclohexylalanine ($\mathbf{1 1}$ vs. 10, 12 vs. 7, and 14 vs. 13, 15), we selected Phe at the P_{2} because it was not found the mammalian protease to digest the Phe-Pro peptidyl bond ${ }^{28)}$.

Compounds, in which P_{3} were introduced $\mathrm{Ac}(17), \mathrm{Bz}$

Table 1. Relationship between structure and endopeptidase inhibitory activities.

Compound No.	Structure ${ }^{\text {a }}$			$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{ml})$	
	P3	$\mathrm{P}_{2} \quad \mathrm{P}_{1}$	P1 ${ }^{\text {a }}$	PEP	Cat-B ${ }^{\text {b }}$
1	Bzl(4-Cl)NH-	Suc- Pro-H		0.027	>100
2	Bzl(4-Cl)NH-	Suc- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.0022	>100
3	$\mathrm{Bz}(3-\mathrm{PhO})$ -	Phe- Pro-H		0.11	7.0
4	$\mathrm{Bz}(3-\mathrm{PhO})-$	Phe- ProCO-	$\mathrm{N}=\left(\mathrm{CH}_{2}\right)_{4}$	0.25	>100
5	$\mathrm{Bz}(3-\mathrm{PhO})-$	Phe- ProCO-	$\mathrm{NH}-\mathrm{cPr}$	0.00070	>100
6	$\mathrm{Bz}(3-\mathrm{PhO})-$	Phe- ProCO-	$\mathrm{NH}-\mathrm{cPn}$	0.00082	>100
7	$\mathrm{Bz}(3-\mathrm{Ph} 0)$ -	Phe- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.00065	>100
8	$\mathrm{Bz}(3-\mathrm{PhO})$ -	Phe- ProCO-	$\mathrm{NH}-\mathrm{cHp}$	0.00080	>100
9	$\mathrm{Bz}(3-\mathrm{PhO})$ -	Phe- ProCO-	$\mathrm{NH}-\mathrm{cOc}$	0.00095	>100
10	Z-	Phe- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.0012	20
11	Z-	Val- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.00050	>100
(7)	$\mathrm{Bz}(3-\mathrm{PhO})$ -	Phe- ProCO-	$\mathrm{NH}-\mathrm{cH} x$	0.00065	>100
12	$\mathrm{Bz}(3-\mathrm{PhO})$ -	Val- ProCO	NH-cHx	0.00050	>100
13	(2-Qui)-	Phe- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.0011	>100
14	(2-Qui)-	Val- ProCO-	NH-cHx	0.00064	>100
15	(2-Qui).	Cha- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.0020	>100
(10)	Z-	Phe- ProCO-	NH-cHx	0.0012	20
16	Boc-	Phe- ProCO-	NH-cHx	0.0015	>100
17	Ac-	Phe- ProCO.	NH-cHx	0.0084	>100
18	Bz -	Phe- ProCO-	$\mathrm{NH}-\mathrm{cH} x$	0.00090	>100
19	(2-The)-	Phe- ProCO-	NH-cHx	0.0011	100
20	Pic-	Phe- ProCO-	NH-cHx	0.00085	>100
21	Nap-	Phe- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.0017	>100
(13)	(2-Qui)-	Phe- ProCO-	NH-chx	0.0011	>100
22	Acr(2-Fur)-	Phe- ProCO-	NH-cHx	0.0031	>100
(7)	$\mathrm{Bz}(3-\mathrm{PhO})$ -	Phe- ProCO-	NH-cHx	0.00065	>100
23	$\mathrm{cHx}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	Phe- ProCO-	$\mathrm{NH}-\mathrm{cHx}$	0.00050	>100
24	$\mathrm{Ac}(\mathrm{PhO})$ -	Phe- ProCO-	NH-cHx	0.00080	5.0

a) Abbreviations are defined in scheme 1. b) Cat-B: cathepsin B
(18), 2-naphthoyl (21) and 2-furylacryloyl (22) instead of urethane-type protective groups ($\mathrm{Z} ; 10$ and Boc; 16) were synthesized. The inhibitory data of these compounds suggest that not only urethane but acyl-type protective groups were preferable for PEP inhibition, and among them Bz was most effective ($\mathrm{IC}_{50}=0.9 \mathrm{ng} / \mathrm{ml}$).

Interestingly, the protecting groups larger than Bz but flexible one such as 3-phenoxybenzoyl (7), 3-cyclohexylpropionyl (23) and phenoxyacetyl (24) indicated strong inhibitory activities against PEP.

Moreover introduction of hetero atom in the P_{3}-acyl groups showed about the same inhibitory activity against those of parental compounds ($\mathbf{1 8} \mathrm{vs} . \mathbf{1 9}, 20$ and 21 vs. 13). Therefore P_{3}-protecting group must be widely modifiable, and all these compounds indicated strong IC_{50} value of nano to subnano g / ml as PEP inhibitor
and no significant inhibitory activities against cysteine protease, cathepsin B except for 24 . Among them compound 23 showed IC_{50} value of $0.5 \mathrm{ng} / \mathrm{ml}$.

In summary, starting from natural PST $\left(\mathrm{IC}_{50}=0.03\right.$ $\mu \mathrm{g} / \mathrm{ml}$), introduction of pyrrolidine ring in the P_{1}, exchange of $P_{1}^{\prime}-\mathrm{P}_{2}^{\prime}$ (D-Leu-L-Val) to non-peptidyl cycloalkylamine component, and modification of $\mathrm{P}_{3}-\mathrm{P}_{2}$ (L-Val-L-Val) to acyl-Phe achieved $10 \sim 60$ times more enhanced activity than PST for PEP inhibition.

Experimental

General

Melting points were determined on a micro melting point apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $400 \mathrm{MHz}, 270 \mathrm{MHz}$ or

90 MHz with a JEOL JNM-GX400, a JNM-EX270 or a Valian EM-390 spectrometer, respectively. FAB-MS spectra were measured on a JEOL JMS-SX102 mass spectrometer. TLC was carried out on Merck precoated silica gel $60 \mathrm{~F}_{254}$ plate. Abbreviations used in the following section were defined in Scheme 1.

Enzyme Assay

Inhibitory activities of PEP and cathepsin B were measured by the procedure described in the previous paper $^{20)}$.

Synthesis

(S)-2-Acetylamino-3-cyclohexylpropionic Acid (25)

To a solution of Ac-L-phenylalanine ($4.03 \mathrm{~g}, 19.4$ mmol) in $\mathrm{MeOH}(50 \mathrm{ml})$ was added $5 \% \mathrm{Rh}-\mathrm{Al}_{2} \mathrm{O}_{3}$ $(0.41 \mathrm{~g})$. The mixture was hydrogenated at room temperature under $2.5 \mathrm{~kg} / \mathrm{cm}^{2}$ of hydrogen atmosphere in a Parr low-pressure hydrogenator for 23 hours. The catalyst (0.40 g) was added and hydrogenation was continued for 20 hours. After additional hydrogenation (additional catalyst; 0.1 g , for 13 hours) the catalyst was filtered off, and the solvent was evaporated to give $\mathbf{2 5}$ as a solid $(4.07 \mathrm{~g}, 98.1 \%)$. This solid was recrystallized from EtOH to give needles: $\mathrm{Rf} 0.64\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}\right.$, $60: 10: 3$); mp $199 \sim 200^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}-4.4^{\circ}(c 1.1, \mathrm{MeOH})$; FAB-MS $m / z 212(\mathrm{M}-\mathrm{H})^{-} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.80 \sim 1.09(2 \mathrm{H}, \mathrm{m}, \mathrm{cHx}$ protons $), 1.10 \sim 1.45$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{cHx}$ protons $), 1.56(1 \mathrm{H}, \mathrm{ddd}, J=4.9,10.3$, $13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}), c a .1 .60 \sim 1.85(6 \mathrm{H}, \mathrm{m}$, overlapping, $\beta-\mathrm{CHaHb}, \mathrm{cHx}$ protons $), 1.97(1 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 4.42(1 \mathrm{H}, \mathrm{dd}$, $J=4.9,10.3 \mathrm{~Hz}, \alpha-\mathrm{CH})$.
(S)-2-(t-Butoxycarbonyl)amino-3-cyclohexylpropionic Acid (Boc- β-cyclohexylalanine (Boc-L-Cha; 26))

A mixture of $25(3.82 \mathrm{~g}, 17.9 \mathrm{mmol})$ in $7 \mathrm{~N} \mathrm{HCl}(100 \mathrm{ml})$ was refluxed for 4 hours, and the solvent was evaporated, washed with acetone (20 ml and 10 ml) to give (S)-2-amino-3-cyclohexylpropionic acid hydrochloride (27) as a solid $(3.59 \mathrm{~g}, 96.6 \%)$. This solid was recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc}$ to give needles: Rf $0.13\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}-\mathrm{AcOH}, 60: 10: 3$); mp $235 \sim 239^{\circ} \mathrm{C}$ (dec, transition occured from $\left.196^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{26}+20.2^{\circ}(c 1.5, \mathrm{MeOH})$; FAB-MS $m / z 172(\mathrm{M}-\mathrm{HCl}+\mathrm{H})^{+}$

To a solution of $27(3.00 \mathrm{~g}, 14.4 \mathrm{mmol})$ in water $(60 \mathrm{ml})$ and dioxane (90 ml) was added triethylamine (4.25 ml , 30.4 mmol) and di-t-butyl dicarbonate $(3.47 \mathrm{~g}, 15.9$ mmol) in an ice bath, and stirred at room temperature for 4.5 hours. After evaporation of the solvent, the solid obtained was dissolved in water (30 ml), washed with EtOAc (20 ml), and acidified (pH 2) with $5 \mathrm{~N} \mathrm{HCl}(3.0 \mathrm{ml})$. The mixture was extracted twice with EtOAc (20 ml), washed with saturated aq $\mathrm{NaCl}(20 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave an amorphous solid of $\mathbf{2 6}, 3.06 \mathrm{~g}$. Moreover crude $26(0.92 \mathrm{~g})$ was recovered from the EtOAc layer before acidified, and the crude product was chromatographed on a column of Sephadex LH-20 with MeOH elution to give 26, 0.86 g
(total $3.92 \mathrm{~g}, 100 \%$): Rf $0.29\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}\right.$, 95:5:1); mp $40 \sim 42^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{26}-2.7^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right)$, ($\mathbf{2 6} \cdot$ dicyclohexylamine salt was prepared for the specific rotation: $[\alpha]_{\mathrm{D}}^{25}+1.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $[\alpha]_{\mathrm{D}}^{20}+1.58^{\circ}$ (c $\left.\left.1.01, \mathrm{CHCl}_{3}\right)\right]^{29}$); FAB-MS $m / z 270(\mathrm{M}-\mathrm{H})^{-} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82 \sim 1.05(2 \mathrm{H}, \mathrm{m}, \mathrm{cHx}$ protons), $1.06 \sim 1.33$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{cHx}$ protons), $1.34 \sim 1.57$ ($2 \mathrm{H}, \mathrm{m}$, overlapping, $\beta-\mathrm{CHaHb}, \mathrm{cHx}$ protons), $1.45(9 \mathrm{H}$, s , Boc), $1.58 \sim 1.89(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CHaHb}, \mathrm{cHx}$ protons), 4.20 and 4.34 (total $1 \mathrm{H}, \mathrm{m}$ and br ddd, $\alpha-\mathrm{CH}$ (cis-trans rotamers of amide bond were observed), 4.87 and 5.96 (total $1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$ and brs, NH (cis-trans rotamers of amide bond were observed) $), 8.58(1 \mathrm{H}, \mathrm{br}, \mathrm{COOH})$.
($R S$)- N-Cyclohexyl-2-[(S)-2-(1- t-butoxycarbonyl-pyrrolidinyl)]-2-hydroxyacetoamide ($\mathrm{Boc}-\mathrm{H}_{2} \mathrm{ProCO}-$ NH-cHx, 28a) and its Analogues (28b ~28f)

28a was prepared from ($R S$)-2-[(S)-2-(1-t-butoxy-carbonylpyrrolidinyl)]-2-hydroxyacetic acid and cyclohexylamine in 96.3% yield according to the procedure described in the previous paper ${ }^{24)}$.

The compounds $\mathbf{2 8 b} \sim \mathbf{2 8 f}$ were prepared by a similar procedure using corresponding amine instead of cyclohexylamine.
($R S$)- N-Cyclopropyl-2-[(S)-2-(1-t-butoxycarbonyl-pyrrolidinyl)]-2-hydroxyacetoamide ($\mathrm{Boc}-\mathrm{H}_{2} \mathrm{ProCO}-$ NH-cPr, 28b): Yield 83.0%; Rf $0.29,0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\mathrm{MeOH}, 20: 1) ;$ FAB-MS $m / z 285(\mathrm{M}+\mathrm{H})^{+}, 229,211$, $185,170,114,70,57 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.36 \sim 0.60(2 \mathrm{H}, \mathrm{m}, \mathrm{cPr}$ protons), $0.70 \sim 0.85(2 \mathrm{H}, \mathrm{m}$, cPr protons), $1.45,1.48(4.5 \mathrm{H}, 4.5 \mathrm{H}$, two s, Boc), $1.59 \sim$ $2.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}(\right.$ pyrrolidinyl) $), 2.45(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHa} \mathrm{Hb}), 2.68,2.72(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two m, NCH), $3.17 \sim$ $3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.92,4.03(0.5 \mathrm{H}, \mathrm{m}, 0.5 \mathrm{H}$, brt, $\mathrm{NC} H \mathrm{CHOH}), 3.92,4.21(0.5 \mathrm{H}, \mathrm{m}, 0.5 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $\mathrm{CHOH}), 6.11,6.24(0.5 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $6.96,7.06(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two brs, NH).
($R S$)- N-Cyclopentyl-2-[(S)-2-(1-t-butoxycarbonyl-pyrrolidinyl)]-2-hydroxyacetoamide ($\mathrm{Boc}-\mathrm{H}_{2} \mathrm{ProCO}-$ NH-cPn, 28c): Yield 93.1\%; Rf 0.23, $0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 30: 1$); FAB-MS $m / z 313(\mathrm{M}+\mathrm{H})^{+}, 257,213$, $170,114,70,57 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28 \sim$ $2.16\left(11 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 4(\mathrm{cPn}), \mathrm{CH}_{2} \mathrm{CHaHb}(\right.$ pyrrolidinyl $)$), 1.46, $1.48(4.5 \mathrm{H}, 4.5 \mathrm{H}$, two s, Boc), $2.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb})$, $3.16 \sim 3.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.93,4.06(0.5 \mathrm{H}, \mathrm{m}, 0.5 \mathrm{H}$, br t, NCHCHOH), 3.93, $4.11 \sim 4.27(0.5 \mathrm{H}, 1.5 \mathrm{H}$, two m , $\mathrm{CHOH}, \mathrm{NCH}), 6.16,6.20(0.5 \mathrm{H}$, brd, 0.5 H, brs, OH$)$, $6.83,6.96(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two brs, NH).
($R S$)- N-Cycloheptyl-2-[(S)-2-(1-t-butoxycarbonyl-pyrrolidinyl)]-2-hydroxyacetoamide ($\mathrm{Boc}-\mathrm{H}_{2} \mathrm{ProCO}$ -NH-cHp, 28d): Yield 96.7\%; Rf 0.32, $0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 30: 1)$; FAB-MS $m / z 341(\mathrm{M}+\mathrm{H})^{+}, 241,170$, $114,70,57 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32 \sim 2.15$ $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6(\mathrm{cHp}), \quad \mathrm{CH}_{2} \mathrm{CHaHb}(\right.$ pyrrolidinyl) $)$, $1.46,1.49(4.5 \mathrm{H}, 4.5 \mathrm{H}$, two s, Boc), 2.48(1H, m, CHa Hb$)$, $3.17 \sim 3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.83 \sim 4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$, $\mathrm{NCHCHOH}($ each 0.5 H$)), 4.07(0.5 \mathrm{H}$, br t, NCHCHOH$)$, $4.20(0.5 \mathrm{H}$, brd, CHOH$), 6.15,6.16(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two
brs, OH), 6.82, $6.96(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two brs, NH).
(RS)-N-Cyclooctyl-2-[(S)-2-(1-t-butoxycarbonyl-pyrrolidinyl)]-2-hydroxyacetoamide (Boc- $\mathrm{H}_{2} \mathrm{ProCO}-$ NH-cOc, 28e): Yield 96.3\%; Rf 0.41, $0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 30: 1$); FAB-MS $m / z 355(\mathrm{M}+\mathrm{H})^{+}, 299,255$, $170,114,70,57 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32 \sim$ $2.15\left(17 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 7(\mathrm{cOc}), \mathrm{CH}_{2} \mathrm{CHaHb}(\right.$ pyrrolidinyl $)$), $1.46,1.48(4.5 \mathrm{H}, 4.5 \mathrm{H}$, two s, Boc), $2.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb})$, $3.18 \sim 3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.93(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.93$, $4.06(0.5 \mathrm{H}, \mathrm{m}, 0.5 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{NCHCHOH}), 3.93,4.21(0.5 \mathrm{H}$, $\mathrm{m}, 0.5 \mathrm{H}$, br d, CHOH$), 6.12,6.17(0.5 \mathrm{H}$, br d, 0.5 H , br s, $\mathrm{OH}), 6.84,6.96(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two br s, NH).

1-\{(RS)-2-[(S)-2-(1-t-butoxycarbonylpyrrolidinyl)]-2-hydroxyacetyl $\}$ pyrrolidine ($\mathrm{Boc}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{N}=\left(\mathrm{CH}_{2}\right)_{4}$, 28f): Yield 85.9%; Rf $0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m/z $299(\mathrm{M}+\mathrm{H})^{+}, 243,255,199,197,170$, $114,70,57$.

Boc-L-Phe- $\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx}$ (29a) and its Analogues (29b~29j)

To a $28 \mathrm{a}(2.157 \mathrm{~g}, 6.61 \mathrm{mmol})$ was added $4 \mathrm{~N} \mathrm{HCl}-$ dioxane (40 ml) in an ice bath, and stirred at room temperature for 1 hour. The solution was evaporated, and the solid obtained was washed with ether (30 ml), and dried to give $\mathbf{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx} \cdot \mathrm{HCl}(\mathbf{3 0}), 1.711 \mathrm{~g}$ (98.5\%).

To the $\mathbf{3 0}$ ($720.9 \mathrm{mg}, 2.74 \mathrm{mmol}$) was added Boc-Lphenylalanine ($763.3 \mathrm{mg}, 2.88 \mathrm{mmol}$) and HOBt (740.6 $\mathrm{mg}, 5.48 \mathrm{mmol}$) in DMF (6 ml). Triethylamine $(0.403 \mathrm{ml}$, $2.88 \mathrm{mmol})$ and $\mathrm{EDC} \cdot \mathrm{HCl}(735.3 \mathrm{mg}, 3.84 \mathrm{mmol})$ was added under ice cooling, and the mixture was stirred in an ice bath for 2 hours and at room temperature for 4 hours. The mixture was diluted with EtOAc (60 ml), and was washed with 4% aq NaHCO_{3}, saturated aq NaCl , 1% aq citric acid and saturated aq NaCl (each 40 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(80: 1)$ to give 29 a as a solid, $1.225 \mathrm{~g}(94.3 \%)$: Rf $0.31,0.38\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$, $20: 1$); FAB-MS $m / z 474(\mathrm{M}+\mathrm{H})^{+}, 418,374,247,227$, 192, 164, 100, 70, 57; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.02 \sim c a .1 .49\left(5 \mathrm{H}, \mathrm{m}\right.$, overlapping, $\mathrm{CH}_{2} \times 2, \mathrm{CHaHb}-$ $(\mathrm{cHx})), 1.37,1.42(4.5 \mathrm{H}, 4.5 \mathrm{H}$, two s, Boc), $1.50 \sim 2.49$ $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx}), \mathrm{CH}_{2} \times 2\right.$ (pyrrolidinyl)), 2.68, $3.52(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two m , NCHaHb), 2.82, $2.91 \sim$ $3.10\left(0.5 \mathrm{H}, \mathrm{dd}, J=8.3,13.5 \mathrm{~Hz}, 1.5 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Phe})\right)$, $3.26(0.5 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), \quad 3.60 \sim 3.86(1.5 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b, \mathrm{NCH}), 3.79,4.10 \sim 4.50(0.5 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, $1.5 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCO}), 4.68(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH}($ Phe $)$), 5.22 , $5.28(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two br d, $\mathrm{NH}(\mathrm{Phe})), 6.80,6.92(0.5 \mathrm{H}$, brd, $J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}$, br d, $J=8.2 \mathrm{~Hz}, \mathrm{NH}$), $7.16 \sim 7.38$ (5H, m, Ph).

The compound 29b and 29d $\sim \mathbf{2 9 f}$ were prepared from
$\mathbf{2 8 b}$ and $\mathbf{2 8 d} \sim \mathbf{2 8 f}$ by a similar procedure. The compound $\mathbf{2 9 c}$ was prepared from $\mathbf{2 8 c}$ by a similar procedure except for the deprotection of Boc-group by TFA treatment. The compound $\mathbf{2 9 g} \sim \mathbf{2 9 j}$ were prepared by a similar procedure using Z-L-Phe, Ac-L-Phe, Z-L-Val and Boc-

L-Cha respectively instead of Boc-L-Phe.
Boc-L-Phe- H_{2} ProCO-NH-cPr (29b): Yield 86.6%; Rf $0.18,0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m / z $432(\mathrm{M}+\mathrm{H})^{+}, 376,332,247,185,183,70,57$.

Boc-L-Phe- H_{2} ProCO-NH-cPn (29c): Yield 62.1\%; Rf $0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 460$ $(\mathrm{M}+\mathrm{H})^{+}, 404,360,247,211,192,164,70,57$.

Boc-L-Phe- H_{2} ProCO-NH-cHp (29d): Yield 91.3\%; Rf 0.46, $0.52\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m/z 488 $(\mathrm{M}+\mathrm{H})^{+}, 388,247,241,239,192,164,70,57$.

Boc-L-Phe- H_{2} ProCO-NH-cOc (29e): Yield 93.8\%; Rf $0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $\mathrm{m} / \mathrm{z} 502$ $(\mathrm{M}+\mathrm{H})^{+}, 446,402,255,253,247,239,192,164,70,57$.

Boc-L-Phe- H_{2} ProCO-N $=\left(\mathrm{CH}_{2}\right)_{4}$ (29f): Yield 82.5\%; Rf 0.30, $0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 446$ $(\mathrm{M}+\mathrm{H})^{+}, 390,375,372,346,291,247,199,197,70,57$.

Z-L-Phe- H_{2} ProCO-NH-cHx (29g): Yield 92.9\%; 29g was subjected to the next step without FAB-MS analysis.

Ac-L-Phe- $\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx}$ (29h): Yield 84.7\%; $\operatorname{Rf} 0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right) ;$ FAB-MS $m / z 416$ $(\mathrm{M}+\mathrm{H})^{+}, 227,225,190,100,70$.

Z-L-Val- H_{2} ProCO-NH-cHx (29i): Yield 86.7\%; Rf $0.39,0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m/z 460 $(\mathrm{M}+\mathrm{H})^{+}, 361,333,227,91,70$.

Boc-L-Cha- H_{2} ProCO-NH-cHx (29j): Yield 95.8\%; Rf $0.31,0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 480$ $(\mathrm{M}+\mathrm{H})^{+}, 424,380,325,281,253,227,225,198,170$, 126, 100, 70, 57.

$\mathrm{Bzl}(4-\mathrm{Cl}) \mathrm{NH}-\mathrm{Suc}-\mathrm{H}_{2}$ ProCO-NH-cHx (29k)

To a solution of succinic anhydride $(1.00 \mathrm{~g}, 9.99 \mathrm{mmol})$ in dry THF (8 ml) was added triethylamine $(1.40 \mathrm{ml}$, 10.0 mmol), and the solution was treated dropwise with 4 -chlorobenzylamine ($1.22 \mathrm{ml}, 10.0 \mathrm{mmol}$) in dry THF $(8 \mathrm{ml})$ under ice cooling over a period of 30 minutes. The mixture was stirred for additional 3 hours at room temperature, and the solvent was evaporated. To the mixture was added $0.5 \mathrm{~N} \mathrm{HCl}(50 \mathrm{ml})$, and the mixture was extracted with EtOAc (40 ml and $20 \mathrm{ml} \times 2$). The combined extracts were washed with 10% aq NaCl (50 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave a solid of N-(4-chlorobenzyl)succinamic acid ($\mathbf{2 9} \mathbf{k a}$) $2.29 \mathrm{~g}(94.7 \%): \mathrm{Rf} 0.44\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}, 90: 10\right.$: 5); mp 145~146.5 ${ }^{\circ} \mathrm{C}$; FAB-MS $m / z 240(\mathrm{M}-\mathrm{H})^{-} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 2.43(4 \mathrm{H}, \mathrm{t}, J=3.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \times 2\right), \quad 4.26\left(2 \mathrm{H}, \quad \mathrm{d}, \quad J=6.0 \mathrm{~Hz}, \quad \mathrm{Ph}(4-\mathrm{Cl}) \mathrm{CH}_{2}\right)$, $7.20 \sim 7.50(4 \mathrm{H}, \mathrm{m}$, aromatic protons), $8.40(1 \mathrm{H}$, brt, $J=6.0 \mathrm{~Hz}, \mathrm{NH}), 12.08(1 \mathrm{H}$, br s, COOH$)$.

The compound $\mathbf{2 9 k}$ was prepared from $\mathbf{2 9 k a}(107.7 \mathrm{mg}$, $0.446 \mathrm{mmol})$ and $30(110.6 \mathrm{mg}, 0.421 \mathrm{mmol})$ according to the procedure described for the preparation of 29a: Yield 89.5\%; Rf $0.53\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right)$; FAB-MS m / z $450(\mathrm{M}+\mathrm{H})^{+}, 416,351,323,309,227,224,182,125,100$, 70.
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2}$ ProCO-NH-cHx (31a) and its Analogues (31b~311)

A solution of 29a ($168.9 \mathrm{mg}, 0.357 \mathrm{mmol}$) in TFA
$(1.6 \mathrm{ml})$ was stirred at room temperature for 40 minutes. The solution was evaporated, and the residue was coevaporated twice with toluene (each 2 ml). To the residue was added 3 -phenoxybenzoic acid $(80.5 \mathrm{mg}$, 0.376 mmol) and $\mathrm{HOBt}(96.4 \mathrm{mg}, 0.713 \mathrm{mmol}$) in DMF (2 ml). Triethylamine ($60 \mu \mathrm{l}, 0.429 \mathrm{mmol}$) and EDC $\cdot \mathrm{HCl}$ ($95.7 \mathrm{mg}, 0.499 \mathrm{mmol}$) was added under ice cooling, and the mixture was stirred in an ice bath for 2 hours and at room temperature for 21 hours. The mixture was diluted with EtOAc (20 ml), and was washed with 4% aq $\mathrm{NaHCO}_{3}, 1 \%$ aq citric acid (this operation was not performed for 31g, 31h and 311) and saturated aq NaCl (each 10 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(120: 1 \sim 100: 1)$ to give 31a as an amorphous solid, 172.2 mg (84.8%): Rf $0.45,0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m/z $570(\mathrm{M}+\mathrm{H})^{+}, 344,316,227,197,70$.

The compound 31b $\sim \mathbf{3 1 f}$ were prepared from 29b $\sim \mathbf{2 9 f}$ by a similar procedure. The compound $\mathbf{3 1 g} \sim \mathbf{3 1 k}$ were prepared from 29 a by a similar procedure using quinaldic ((2-Qui)) acid, picolinic (Pic) acid, 2-naphthoic (Nap) acid, 3-(2-furyl)acrylic (Acr(2-Fur)) acid, and 3cyclohexyl propionic $\left(\mathrm{cHx}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}\right)$ acid respectively instead of 3-phenoxybenzoic acid. The compound 311 were prepared from $29 \mathbf{j}$ by a similar procedure using quinaldic ((2-Qui)) acid instead of 3-phenoxybenzoic acid.
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cPr}$ (31b): Yield 79.5%; Rf $0.27,0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 528(\mathrm{M}+\mathrm{H})^{+}, 344,316,197,185$.
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cPn}$ (31c): Yield 94.5%; Rf $0.20,0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right)$; $\mathrm{FAB}-\mathrm{MS}$ $m / z 556(\mathrm{M}+\mathrm{H})^{+}, 344,316,213,197,70$.
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHp}$ (31d): Yield 87.0%; Rf $0.23,0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right)$; FAB-MS $m / z 584(\mathrm{M}+\mathrm{H})^{+}, 344,316,241,197,70$.
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cOc}$ (31e): Yield 94.7\%; Rf 0.31, $0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right)$; FAB-MS $m / z 598(\mathrm{M}+\mathrm{H})^{+}, 344,316,255,253,197,70$.
$\mathrm{Bz}(3-\mathrm{PhO})$-L-Phe- H_{2} ProCO- $\mathrm{N}=\left(\mathrm{CH}_{2}\right)_{4}$ (31f): Yield 69.6%; Rf $0.38,0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 542(\mathrm{M}+\mathrm{H})^{+}, 344,316,199,197$.
(2-Qui)-L-Phe- $\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx}$ (31g): Yield 94.6\%; $\operatorname{Rf} 0.43, \quad 0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}, \quad 20: 1: 0.5\right)$; FAB-MS $m / z 529(\mathrm{M}+\mathrm{H})^{+}, 303,275,227,225,128,70$.

Pic-L-Phe- H_{2} ProCO-NH-cHx (31h): Yield 94.6\%; Rf $0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}, 20: 1: 0.5\right)$; FAB-MS m / z $479(\mathrm{M}+\mathrm{H})^{+}, 380,322,253,227,225$.

Nap-L-Phe- H_{2} ProCO-NH-cHx (31i): Yield 93.2\%; Rf $0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right)$; FAB-MS $\mathrm{m} / \mathrm{z} 528$ $(\mathrm{M}+\mathrm{H})^{+}, 371,302,227,155,127,70$.

Acr(2-Fur)-L-Phe- H_{2} ProCO-NH-cHx (31j): Yield 90.7%; Rf 0.40, $0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 494(\mathrm{M}+\mathrm{H})^{+}, 268,240,227,225,121,70$.
$\mathrm{cHx}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2}$ ProCO-NH-cHx (31k): Yield 91.6%; Rf 0.30, $0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 512(\mathrm{M}+\mathrm{H})^{+}, 286,227,225,70$.
(2-Qui)-L-Cha- H_{2} ProCO-NH-cHx (311): Yield 90.7%; Rf 0.50, $0.54\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}, 20: 1: 0.5\right)$; FABMS $m / z 535(\mathrm{M}+\mathrm{H})^{+}, 309,281,227,225,156,128,70$.

(2-Qui)-L-Val- H_{2} ProCO-NH-cHx (31m)

To a solution of $29 \mathrm{i}(364.4 \mathrm{mg}, 0.793 \mathrm{mmol})$ in MeOH (4 ml) was added palladium-black catalyst $(9.3 \mathrm{mg}$). The mixture was hydrogenated at room temperature in a hydrogen atmosphere for 24 hours. The catalyst was filtered off, evaporation of the solvent gave an amorphous solid, 258.0 mg ($\mathrm{L}-\mathrm{Val}-\mathrm{H}_{2}$ ProCO-NH-cHx; 29ia). To the product ($130.3 \mathrm{mg}, 0.400 \mathrm{mmol}$) was added quinaldic acid $(73.6 \mathrm{mg}, 0.425 \mathrm{mmol})$ and $\mathrm{HOBt}(108.2$ $\mathrm{mg}, 0.800 \mathrm{mmol})$ in DMF (2 ml). EDC $\cdot \mathrm{HCl}(107.5 \mathrm{mg}$, 0.561 mmol) was added under ice cooling, and the mixture was stirred in an ice bath for 2 hours and at room temperature for 14 hours. The mixture was diluted with EtOAc (20 ml), and was washed with $4 \% \mathrm{aq}$ NaHCO_{3} and saturated aq NaCl (each 15 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ (120:1:1) to give 31m as an amorphous solid, 188.4 mg (97.9%): Rf $0.43,0.46$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}, 20: 1: 0.5\right)$; FAB-MS $m / z 481$ $(\mathrm{M}+\mathrm{H})^{+}, 382,354,255,227,128,70$.

$\mathrm{Bz}(3-\mathrm{PhO})$ - $\mathrm{L}-\mathrm{Val}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx}$ (31n)

To the 29 ia ($127.7 \mathrm{mg}, 0.392 \mathrm{mmol}$) was added 3 phenoxybenzoic acid ($90.7 \mathrm{mg}, 0.423 \mathrm{mmol}$) and HOBt $(108.7 \mathrm{mg}, 0.804 \mathrm{mmol})$ in DMF (2 ml). EDC $\cdot \mathrm{HCl}$ ($107.9 \mathrm{mg}, 0.563 \mathrm{mmol}$) was added under ice cooling, and the mixture was stirred in an ice bath for 2 hours and at room temperature for 5 hours. The mixture was diluted with EtOAc $(20 \mathrm{ml})$, and was washed with $4 \% \mathrm{aq}$ $\mathrm{NaHCO}_{3}, 1 \%$ aq citric acid and saturated aq NaCl (each $10 \mathrm{ml})$, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(100: 1)$ to give $\mathbf{3 1 n}$ as an amorphous solid, 187.9 mg (91.8%): Rf $0.42,0.46$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m/z $522(\mathrm{M}+\mathrm{H})^{+}$, 395, 296, 268, 227, 197, 70.

Bz-L-Phe- H_{2} ProCO-NH-cHx (310) and its Analogues (31p and 31q)

To a 29a $(613.6 \mathrm{mg}, 1.30 \mathrm{mmol})$ was added 4 N HCl -dioxane (10 ml) in an ice bath, and stirred at room temperature for 1 hour. The solution was evaporated, and the solid obtained was washed with ether (10 ml), and dried to give $\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx} \cdot \mathrm{HCl}(29 \mathrm{aa})$, $521.4 \mathrm{mg}(98.2 \%)$.

To a solution of 29 aa ($138.9 \mathrm{mg}, 0.339 \mathrm{mmol}$) in dry THF (1.4 ml) was added triethylamine ($105 \mu \mathrm{l}, 0.750$ mmol), and the mixture was treated dropwise with benzoyl chloride ($44 \mu 1,0.379 \mathrm{mmol}$) in dry THF (3 ml) at room temperature over a period of 30 minutes. The mixture was stirred for additional 3 hours at room temperature, and the solvent was evaporated. To the mixture was added $1 \mathrm{~N} \mathrm{HCl}(6 \mathrm{ml})$, and the mixture was
extracted with EtOAc (8 ml and $4 \mathrm{ml} \times 2$). The combined extracts were washed with saturated aq NaHCO_{3} and saturated aq NaCl (each 12 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ MeOH ($100: 1 \sim 80: 1$) to give 31o as an amorphous solid, $150.1 \mathrm{mg}(92.8 \%)$: Rf $0.50,0.54\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$, 20: 1); FAB-MS $m / z 478(\mathrm{M}+\mathrm{H})^{+}, 252,227,225,224$, 105, 70.

The compound 31p and $\mathbf{3 1 q}$ were prepared by a similar procedure using 2 -thenoyl (2-The) chloride and phenoxyacetyl ($\mathrm{Ac}(\mathrm{PhO})$) chloride respectively instead of benzoyl chloride.
(2-The)- $\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2}$ ProCO-NH-cHx (31p): Yield 98.4\%; Rf $0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m/z 484 $(\mathrm{M}+\mathrm{H})^{+}, 258,230,227,225,111$.
$\mathrm{Ac}(\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{NH}-\mathrm{cHx}$ (31q): Yield 96.4\%; Rf 0.32, $0.38\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 508(\mathrm{M}+\mathrm{H})^{+}, 409,381,254,227,225,100,70$.

Pfitzner-Moffatt Oxidation (Boc-L-Phe-(S)-ProCO-NH-cHx (16) and its Analogues (2, 10, 11 and 15))

A mixture of $29 \mathrm{a}(214.5 \mathrm{mg}, 0.453 \mathrm{mmol})$, pyridinium trifluoroacetate ($43.8 \mathrm{mg}, 0.227 \mathrm{mmol}$), $\mathrm{EDC} \cdot \mathrm{HCl}(260.5$ $\mathrm{mg}, 1.359 \mathrm{mmol}$), anhydrous DMSO (2 ml) was stirred at room temperature for 9 hours. The reaction mixture was diluted with EtOAc (20 ml), and the mixture was washed with water $(10 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ (20:1~10:1) to give an amorphous solid of $\mathbf{1 6}, 171.3 \mathrm{mg}$ (80.2\%): Rf $0.50\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 40: 1\right) ; \mathrm{mp} 65 \sim 67^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}-26.6^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;$ FAB-MS $m / z 472$ $(\mathrm{M}+\mathrm{H})^{+}, 416,398,372,345,225,223,192,164,70,57$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08 \sim 1.48(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right), 1.37(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 1.55 \sim 2.06$ $\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})\right.$), $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b(\operatorname{ProCO})), 2.88(1 \mathrm{H}, \mathrm{dd}, J=6.8$, $13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.06(1 \mathrm{H}, \mathrm{dd}, J=7.1,13.7 \mathrm{~Hz}$, $\beta-\mathrm{CHaHb}(\mathrm{Phe})), c a .3 .09(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$)$, $3.64(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 3.74(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}(\mathrm{cHx})), 4.64$ ($1 \mathrm{H}, \mathrm{ddd}, J=6.8,7.1,8.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})$), $5.23(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}, \quad \mathrm{NH}($ Phe $)), 5.32(1 \mathrm{H}, \mathrm{dd}, J=5.8,8.4 \mathrm{~Hz}$, $\mathrm{NCHCOCO}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{NH}), 7.17 \sim 7.37$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

The compound 2,10, 11 and 15 were prepared from $\mathbf{2 9 k}, 29 \mathrm{~g}, \mathbf{2 9}$ and 311 by a similar procedure, respectively.

Bzl(4-Cl)-NH-Suc-(S)-ProCO-NH-cHx (2): Yield 67.9\%; $\operatorname{Rf} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right) ; \mathrm{mp} 168 \sim 170^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{27}-7.4^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right.$); FAB-MS m / z $448(\mathrm{M}+\mathrm{H})^{+}, 321,225,125,70 ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.07 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right)$, $1.54 \sim 2.11\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHa} \mathrm{Hb}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (ProCO)), 2.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}($ ProCO $)$), $2.42 \sim 2.82$ $\left(4 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \times 2(\mathrm{Suc})\right), \quad 3.50 \sim$ ca. $\quad 3.70(2 \mathrm{H}, \quad \mathrm{m}$, overlapping, $\left.\mathrm{NCH}_{2}\right), 3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 4.34(1 \mathrm{H}, \mathrm{dd}$, $J=5.9,15.2 \mathrm{~Hz}, \mathrm{Ph}(4-\mathrm{Cl}) \mathrm{CHaHbNH}), 4.40(1 \mathrm{H}, \mathrm{dd}$, $J=5.9,15.2 \mathrm{~Hz}, \mathrm{Ph}(4-\mathrm{Cl}) \mathrm{CHa} H b \mathrm{NH}), 5.28(1 \mathrm{H}, \mathrm{dd}$,
$J=5.1,9.1 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.58\left(1 \mathrm{H}\right.$, br dd, $\left.\mathrm{CH}_{2} \mathrm{~N} H\right)$, $6.72(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.19(2 \mathrm{H}, \mathrm{m}$, aromatic protons), 7.29 ($2 \mathrm{H}, \mathrm{m}$, aromatic protons).

Z-L-Phe-(S)-ProCO-NH-cHx (10): Yield 81.2\%; FABMS $m / z 506(\mathrm{M}+\mathrm{H})^{+}, 225,91,70 ;{ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.05 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right)$, $1.54 \sim 2.05\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (ProCO)), $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}(\operatorname{ProCO})), 2.91(1 \mathrm{H}$, $\mathrm{dd}, J=6.9,13.9 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.00 \sim 3.20(2 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHaHb}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.55 \sim 3.85(2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b, \mathrm{NCH}(\mathrm{cHx})), 4.70(1 \mathrm{H}, \mathrm{ddd}, J=6.9,7.1$, $8.9 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.03,5.06(2 \mathrm{H}, \mathrm{ABq}, J=12.4 \mathrm{~Hz}$, $\left.\mathrm{PhCH} \mathrm{H}_{2} \mathrm{OCO}\right), 5.32(1 \mathrm{H}, \mathrm{dd}, J=5.4,8.1 \mathrm{~Hz}, \mathrm{NCHCO}-$ $\mathrm{CO}), 5.50(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe})), 6.78(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}, \mathrm{NH}), 7.10 \sim 7.46(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2)$.

Z-L-Val-(S)-ProCO-NH-cHx (11): Yield 74.0%; Rf $0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right.$); mp $55 \sim 57^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{24}-80.7^{\circ}$ (c 1.0, CHCl_{3}); FAB-MS $m / z 458$ $(\mathrm{M}+\mathrm{H})^{+}, 331,225,223,91,70 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.93,1.04(6 \mathrm{H}$, two d, each $J=6.8 \mathrm{~Hz}$, $\mathrm{CH}_{3} \times 2(\mathrm{Val}), \quad 1.10 \sim 1.45\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}\right.$ $(\mathrm{cHx})), \quad 1.56 \sim 1.78 \quad\left(3 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2}, \quad \mathrm{CHaHb}(\mathrm{cHx})\right)$, $1.83 \sim 2.12\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})\right.$, $\beta-\mathrm{CH}(\mathrm{Val})), 2.39(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b(\mathrm{ProCO})), 3.66(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHaHb}), 3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 3.85(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b), 4.34(1 \mathrm{H}$, dd, $J=6.3,9.3 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val}))$, $5.06,5.09\left(2 \mathrm{H}, \mathrm{ABq}, J=12.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.30(1 \mathrm{H}$, $\mathrm{dd}, J=7.1,8.5 \mathrm{~Hz}, \mathrm{NCHCOCO}), 5.40(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}$, $\mathrm{NH}(\mathrm{Val})), 6.73(1 \mathrm{H}$, brd, $J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.24 \sim 7.43$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
(2-Qui)-L-Cha-(S)-ProCO-NH-cHx (15): Yield 74.9\%; Rf $0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right.$); $\mathrm{mp} 82 \sim 84^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{26}-49.3^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right)$; FAB-MS m / z $533(\mathrm{M}+\mathrm{H})^{+}, 309,281,225,156,128,70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85 \sim 1.56(11 \mathrm{H}, \mathrm{m}, \mathrm{cHx}$ protons), $1.57 \sim 2.17\left(15 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}\right.$ (Cha), $\mathrm{CH}_{2} \mathrm{CHaHb}($ ProCO $)$, cHx protons $), 2.39(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}(\mathrm{ProCO})), 3.66 \sim 3.80$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}, \mathrm{N}-\mathrm{CH}), 3.98(1 \mathrm{H}, \mathrm{dt}, J=6.4,9.8 \mathrm{~Hz}$, $\mathrm{NCHa} H b$), $5.14(1 \mathrm{H}$, ddd, $J=5.4,9.3,9.3 \mathrm{~Hz}, \alpha-$ $\mathrm{CH}(\mathrm{Cha})$), $5.28(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.5 \mathrm{~Hz}, \mathrm{NCHCOCO})$, $6.75(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.60,7.76(2 \mathrm{H}$, two m, aromatic protons), $7.86,8.13,8.25,8.29(4 \mathrm{H}$, four d , aromatic protons), $8.71(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Cha}))$.

Albright-Goldman Oxidation ($\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-(S)$ -ProCO-NH-cHx (7) and its Analogues (4~6, 8,9, $12 \sim 14$ and $17 \sim 24$))

A mixture of $\mathbf{3 1 a}(155.3 \mathrm{mg}, 0.273 \mathrm{mmol}$), anhydrous DMSO (0.5 ml) and $\mathrm{Ac}_{2} \mathrm{O}(0.52 \mathrm{ml}, 5.50 \mathrm{mmol})$ was stirred at room temperature for 24 hours. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ and stirred for 30 minutes. The mixture was extracted with EtOAc $(10 \mathrm{ml} \times 2)$, and the mixture was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ ($100: 3 \sim 50: 4$) to give an amorphous solid of $7,125.1 \mathrm{mg}$ (80.8%): Rf $0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right) ; \mathrm{mp} 73 \sim 75^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}-43.6^{\circ}\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) ;$ FAB-MS $m / z \quad 568$
$(\mathrm{M}+\mathrm{H})^{+}, 441,344,316,225,197,70 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$, $\mathrm{CHaHb}(\mathrm{cHx})), \quad 1.52 \sim 2.04\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHa} \mathrm{Hb}\right.$ (cHx), $\mathrm{CH}_{2} \mathrm{CHaHb}($ ProCO)), 2.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (Pro$\mathrm{CO})$), $3.07(1 \mathrm{H}, \mathrm{dd}, J=6.1,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), c a$. $3.12(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$), 3.19(1 \mathrm{H}$, dd, $J=7.1,13.7 \mathrm{~Hz}, \beta$-СНа $H b$ (Phe)), $3.64 \sim 3.84$ ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b, \mathrm{NCH}(\mathrm{cHx})), 5.12(1 \mathrm{H}$, br ddd, $\alpha-\mathrm{CH}(\mathrm{Phe}))$, $5.34(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.6 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.80(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}, \mathrm{NH}), 6.90 \sim 7.50(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2$, phenylene, NH (Phe)).

The compound $\mathbf{4 \sim 6} \mathbf{\sim}$ 8, 9, 12~14 and $17 \sim 24$ were prepared from 31f, 31b~31e, 31n, 31g, 31m, 29h, 31o, 31p, 31h $\sim 31 \mathrm{k}$ and 31q by a similar procedure, respectively.
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-(S)$-ProCO-N $=\left(\mathrm{CH}_{2}\right)_{4}$ (4): Yield 32.5%; Rf $0.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right) ; \mathrm{mp} 62 \sim 64^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{24}-54.8^{\circ}$ (c $0.58, \mathrm{CHCl}_{3}$); FAB-MS $m / z 540(\mathrm{M}+\mathrm{H})^{+}, 344,316,197,70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.65 \sim 2.19\left(7 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2}(\mathrm{ProCO})\right.$, $3-\mathrm{CHaHb}(\mathrm{ProCO}), \mathrm{CH}_{2} \times 2$ (pyrrolidinyl) $), 2.38(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{CHa} H b(\operatorname{ProCO})), 3.01(1 \mathrm{H}, \quad \mathrm{dd}, \quad J=5.9,13.7 \mathrm{~Hz}$, $\beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.20(1 \mathrm{H}, \mathrm{dd}, J=6.3,13.7 \mathrm{~Hz}, \quad \beta-$ CHaHb (Phe)), 3.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}(\mathrm{ProCO})$), 3.50, $3.67\left(2 \mathrm{H}, 2 \mathrm{H}\right.$, two $\left.\mathrm{m}, \mathrm{H}_{2} \mathrm{C}-\mathrm{NCH}_{2}\right), 3.78(1 \mathrm{H}, \mathrm{m}$, NCHa $H b$ (ProCO)), $4.88(1 \mathrm{H}, \mathrm{dd}, J=6.8,7.8 \mathrm{~Hz}$, NCHCOCO), 5.13 (1 H, ddd, $J=5.9,6.3,7.8 \mathrm{~Hz}$, $\alpha-\mathrm{CH}(\mathrm{Phe})), 6.82(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{NH}), 6.99(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.12(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.18 \sim 7.44(10 \mathrm{H}, \mathrm{m}$, aromatic protons) .
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Phe}-(S)$-ProCO-NH-cPr (5): Yield 90.4%; Rf $0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right) ; \mathrm{mp} 70 \sim 72^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{26}-48.6^{\circ}$ (c $1.5, \mathrm{CHCl}_{3}$); FAB-MS $m / z 526(\mathrm{M}+\mathrm{H})^{+}, 441,344,316,197,183,70 ;$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.61,0.84(4 \mathrm{H}($ each 2 H$)$, two $\mathrm{m}, \mathrm{CH}_{2} \times 2(\mathrm{cPr})$), $1.78 \sim 2.05\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (ProCO)), $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b(\operatorname{ProCO})), 2.78(1 \mathrm{H}, \mathrm{m}$, $\mathrm{N}-\mathrm{CH}), 3.06(1 \mathrm{H}, \mathrm{dd}, J=5.9,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe}))$, ca. $3.15(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$), 3.16(1 \mathrm{H}$, dd, $J=7.1,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b(\mathrm{Phe})), 3.72(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b), 5.10(1 \mathrm{H}$, ddd, $J=5.9,7.1,7.8 \mathrm{~Hz}, \alpha-$ $\mathrm{CH}(\mathrm{Phe})), 5.30(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.3 \mathrm{~Hz}, \mathrm{NCHCOCO})$, $6.93(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{NH}), 6.96 \sim 7.05(3 \mathrm{H}, \mathrm{m}$, aromatic protons, NH (Phe)), $7.12(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.17 \sim 7.46(10 \mathrm{H}, \mathrm{m}$, aromatic protons).

Bz(3-PhO)-L-Phe-(S)-ProCO-NH-cPn (6): Yield 97.5%; Rf $0.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right) ; \mathrm{mp} 70 \sim 72^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{28}-45.1^{\circ}$ (c 1.0, CHCl_{3}); FAB-MS $m / z 554(\mathrm{M}+\mathrm{H})^{+}, 441,344,316,211,197,70$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35 \sim 1.80(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 3(\mathrm{cPn})\right), 1.81 \sim 2.15\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}(\mathrm{cPn}), \mathrm{CH}_{2} \mathrm{CHa}-\right.$ $\mathrm{Hb}(\operatorname{ProCO})), 2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}(\operatorname{ProCO})), 3.07(1 \mathrm{H}$, dd, $J=5.9,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe}))$, ca. $3.12(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb), $3.18(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.7 \mathrm{~Hz}$, β-CHaHb(Phe)), $3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 4.18$ (1 H , sestet, $J=7.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}), 5.11$ (1 H , ddd, $J=5.9,7.3$, $8.3 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=6.1,8.5 \mathrm{~Hz}$, $\mathrm{NCHCOCO}), 6.84(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{NH}), 6.93(1 \mathrm{H}, \mathrm{d}$,
$J=8.3 \mathrm{~Hz}, \quad \mathrm{NH}(\mathrm{Phe})), \quad 6.98 \sim 7.50(14 \mathrm{H}, \mathrm{m}, \quad \mathrm{Ph} \times 2$, phenylene).

Bz(3-PhO)-L-Phe-(S)-ProCO-NH-cHp (8): Yield 82.7%; Rf $0.53\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right) ; \mathrm{mp} 70 \sim 72^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{24}-45.0^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); FAB-MS $m / z 582(\mathrm{M}+\mathrm{H})^{+}, 441,344,316,239,197$, $70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40 \sim 1.74(11 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \times 5, \mathrm{CHaHb}(\mathrm{cHp})\right), 1.80 \sim 2.06(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHaHb}(\mathrm{cHp}), \mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})\right), 2.32(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHaHb}(\operatorname{ProCO})), 3.07(1 \mathrm{H}, \mathrm{dd}, J=5.9,13.7 \mathrm{~Hz}, \beta-$ $\mathrm{CHaHb}(\mathrm{Phe}))$, ca. $3.12(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$)$, $3.18(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b(\mathrm{Phe})), 3.70(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHa} H b), 3.92(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 5.11(1 \mathrm{H}$, ddd, $J=5.9,7.3,7.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=5.9$, $8.8 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 6.93$ (1 H , brd, $\mathrm{NH}($ Phe $)$), $6.99(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.12(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.18 \sim 7.44(10 \mathrm{H}, \mathrm{m}$, aromatic protons).
$\mathrm{Bz}(3-\mathrm{PhO})$-L-Phe-(S)-ProCO-NH-cOc (9): Yield 91.7\%; Rf $0.53\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right)$; mp 67.5~ $69.5^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{26}-45.1^{\circ}\left(c 1.3, \mathrm{CHCl}_{3}\right)$; FAB-MS $m / z 596(\mathrm{M}+\mathrm{H})^{+}, 441,344,316,253,197,70$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40 \sim 2.05(17 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 7(\mathrm{cOc}), \quad \mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})\right), \quad 2.33(1 \mathrm{H}, \quad \mathrm{m}$, $\mathrm{CHa} H b(\operatorname{ProCO})), 3.07(1 \mathrm{H}, \mathrm{dd}, J=5.9,13.7 \mathrm{~Hz}, \beta-$ $\mathrm{CHaHb}(\mathrm{Phe}))$, ca. $3.14(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$)$, $3.18(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b(\mathrm{Phe})), 3.70(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHa} H b), 3.96(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 5.11(1 \mathrm{H}$, ddd, $J=5.9,7.3,7.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=5.9$, $8.3 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 6.99$ $(3 \mathrm{H}, \mathrm{m}$, aromatic protons, $\mathrm{NH}(\mathrm{Phe})), 7.12(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.18 \sim 7.49(10 \mathrm{H}, \mathrm{m}$, aromatic protons).
$\mathrm{Bz}(3-\mathrm{PhO})-\mathrm{L}-\mathrm{Val}-(S)$-ProCO-NH-cHx (12): Yield 90.8%; Rf $0.59\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right) ; \mathrm{mp} 70 \sim 72^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{27}-83.7^{\circ}$ (c 1.0, CHCl_{3}); FAB-MS $m / z 520(\mathrm{M}+\mathrm{H})^{+}, 393,296,268,225,197,70 ;$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00,1.09(6 \mathrm{H}$, two d, each $J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2(\mathrm{Val}), c a .1 .14 \sim 1.46(5 \mathrm{H}, \mathrm{m}$, overlapping, $\left.\mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right), 1.54 \sim 1.82(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}, \mathrm{CHaHb}(\mathrm{cHx})\right), 1.83 \sim 2.11\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}(\mathrm{cHx})\right.$, $\mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})$), 2.18 ($1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}(\mathrm{Val})$), 2.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b$ (ProCO)), $3.64 \sim 3.81$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}$, $\mathrm{NCHaHb}), 3.96(1 \mathrm{H}, \mathrm{dt}, J=6.1,10.3 \mathrm{~Hz}, \mathrm{NCHaHb})$, $4.83(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 5.31(1 \mathrm{H}, \mathrm{dd}$, $J=7.1,8.5 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.75(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, NH), $6.93(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Val})), 7.01(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.12(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.28 \sim 7.56(5 \mathrm{H}, \mathrm{m}$, aromatic protons).
(2-Qui)-L-Phe-(S)-ProCO-NH-cHx (13): Yield 72.4\%; $\operatorname{Rf} 0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right) ; \mathrm{mp} 83 \sim 84^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{26}-42.1^{\circ}\left(c \quad 0.86, \mathrm{CHCl}_{3}\right) ;$ FAB-MS $m / z 527$ $(\mathrm{M}+\mathrm{H})^{+}, 303,275,225,128 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.12 \sim 1.48\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right)$, $1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b(\mathrm{cHx})), \quad 1.70 \sim 2.06(7 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \times 2(\mathrm{cHx}), \quad \mathrm{CH}_{2} \mathrm{CHaHb}($ ProCO $\left.)\right), 2.32(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHaHb}(\mathrm{ProCO})), \quad c a . \quad 3.14(1 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{NCHaHb}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=6.8,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}$
(Phe)), 3.28 ($1 \mathrm{H}, \mathrm{dd}, J=7.3,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b$ (Phe)), $3.70 \sim 3.83$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}, \mathrm{N}-\mathrm{CH}$), $5.22(1 \mathrm{H}$, ddd, $J=6.8,7.3,8.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.36(1 \mathrm{H}, \mathrm{dd}, J=6.1$, $8.5 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.82(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH})$, $7.20 \sim 7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.61,7.76(2 \mathrm{H}$, two m, aromatic protons), $7.86,8.12,8.20,8.27(4 \mathrm{H}$, four d , aromatic protons), $8.89(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe}))$.
(2-Qui)-L-Val-(S)-ProCO-NH-cHx (14): Yield 90.8\%; Rf $0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right) ; \mathrm{mp} 145.5 \sim 146.5^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{26}-35.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$); FAB-MS $m / z 479$ $(\mathrm{M}+\mathrm{H})^{+}, 352,255,227,225,128,70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07,1.14(6 \mathrm{H}$, two d, $J=6.4,6.8 \mathrm{~Hz}$, $\mathrm{CH}_{3} \times 2(\mathrm{Val})$), ca. $1.15 \sim 1.47$ ($5 \mathrm{H}, \mathrm{m}$, overlapping, $\left.\mathrm{CH}_{2} \times 2, \quad \mathrm{CHaHb}(\mathrm{cHx})\right), \quad 1.60 \sim 1.83\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, $\mathrm{CHaHb}(\mathrm{cHx})), 1.86 \sim 2.14\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHa}-\right.$ $\mathrm{Hb}(\operatorname{ProCO})), 2.30(1 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}(\mathrm{Val})), 2.40(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHaHb}(\mathrm{ProCO})), 3.67 \sim 3.85(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}, \mathrm{NCHaHb})$, $4.01(1 \mathrm{H}, \mathrm{dt}, J=6.3,9.8 \mathrm{~Hz}, \mathrm{NCHa} H b), 4.88(1 \mathrm{H}, \mathrm{dd}$, $J=7.3,9.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=6.8,8.3 \mathrm{~Hz}$, $\mathrm{NCHCOCO}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.60,7.75$ (2 H , two m , aromatic protons), $7.86,8.14,8.25,8.29$ (4 H , four d, aromatic protons), $8.78(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}$, $\mathrm{NH}(\mathrm{Val})$).

Ac-L-Phe-(S)-ProCO-NH-cHx (17): Yield 69.5\%; Rf $0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; mp $94 \sim 96.5^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{25}-30.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; FAB-MS m / z $414(\mathrm{M}+\mathrm{H})^{+}, 287,225,223,190,70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11 \sim 1.48\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$, $\mathrm{CHaHb}(\mathrm{cHx})), 1.55 \sim 2.05\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}\right.$ $\left.(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})\right), 1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.32(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHa} H b(\mathrm{ProCO})), 2.94(1 \mathrm{H}, \mathrm{dd}, J=6.4,13.7 \mathrm{~Hz}$, $\beta-\mathrm{CHaHb}(\mathrm{Phe}))$, ca. $3.06(1 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{NCHa}-$ $\mathrm{Hb}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=7.3,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b($ Phe $)), 3.46$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 4.96(1 \mathrm{H}$, ddd, $J=6.4,7.3,8.3 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=6.1$, $8.5 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.36(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}($ Phe $))$, $6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.15 \sim 7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Bz-L-Phe-(S)-ProCO-NH-cHx (18): Yield 88.5\%; Rf $0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right)$; mp $78 \sim 80^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{26}-47.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; FAB-MS $m / z 476$ $(\mathrm{M}+\mathrm{H})^{+}, 349,252,225,224,105,70 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11 \sim 1.48\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}\right.$ $(\mathrm{cHx})), 1.55 \sim 2.06\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHa} H b(\mathrm{cHx})\right.$, $\left.\mathrm{CH}_{2} \mathrm{CHaHb}(\mathrm{ProCO})\right), 2.34(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}($ ProCO $)$), $3.10(1 \mathrm{H}, \mathrm{dd}, J=5.9,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), c a .3 .13$ $(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$), 3.21(1 \mathrm{H}, \mathrm{dd}, J=7.3$, $13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b$ (Phe)), $3.65 \sim 3.83$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b$, $\mathrm{N}-\mathrm{CH}), 5.16(1 \mathrm{H}, \mathrm{ddd}, J=5.9,7.3,7.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe}))$, $5.35(1 \mathrm{H}, \mathrm{dd}, J=6.1,8.5 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.80(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, \mathrm{NH}), 6.97(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe}))$, $7.19 \sim 7.55$ ($8 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.69(2 \mathrm{H}, \mathrm{m}$, aromatic protons).
(2-The)-L-Phe-(S)-ProCO-NH-cHx (19): Yield 76.6\%; Rf $0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right.$); mp $88 \sim 91^{\circ} \mathrm{C}$ (amorphous solid); $[\alpha]_{\mathrm{D}}^{27}-58.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ FAB-MS m / z $482(\mathrm{M}+\mathrm{H})^{+}, 230,225,111 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.11 \sim 1.48\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right)$, $1.55 \sim 2.06\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}\right.$
(ProCO)), 2.34 (1H, m, CHaHb(ProCO)), 3.10 (1 H , dd, $J=5.9, \quad 13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe}))$, \quad a. $3.11(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb), 3.17 (1 H , dd, $J=7.3,13.7 \mathrm{~Hz}$, $\beta-\mathrm{CHa} H b$ (Phe)), $3.65 \sim 3.81$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b, \mathrm{~N}-\mathrm{CH}$), $5.10(1 \mathrm{H}, \mathrm{ddd}, J=5.9,7.3,8.3 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.38(1 \mathrm{H}$, $\mathrm{dd}, J=5.9,8.8 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $\mathrm{NH}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}($ Phe $)), 7.05(1 \mathrm{H}, \mathrm{m}$, aromatic proton), $7.19 \sim 7.53(7 \mathrm{H}, \mathrm{m}$, aromatic protons).

Pic-L-Phe-(S)-ProCO-NH-cHx (20): Yield 68.2\%; Rf $0.66\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}, 95: 5: 1\right)$; mp $138 \sim 139^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{22}-53.4^{\circ}$ ($c 1.0, \mathrm{CHCl}_{3}$); FAB-MS $m / z 477$ $(\mathrm{M}+\mathrm{H})^{+}, 350,253,225 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.08 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right), 1.52 \sim 2.06$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}($ ProCO) $)$, $2.31(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}(\operatorname{ProCO})), 3.08(1 \mathrm{H}, \mathrm{dd}, J=6.4$, $13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe}))$, ca. $3.11(1 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{NCHaHb}), 3.23(1 \mathrm{H}$, dd, $J=7.4,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b$ (Phe)), $3.64 \sim 3.84(2 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{NCHa} H b$, $\mathrm{N}-\mathrm{CH}), 5.14(1 \mathrm{H}$, ddd, $J=6.4,7.4,8.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe}))$, $5.33(1 \mathrm{H}, \mathrm{dd}, J=5.9,8.6 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.80(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.18 \sim 7.47(6 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.81(1 \mathrm{H}, \mathrm{m}$, aromatic proton), 8.08 ($1 \mathrm{H}, \mathrm{m}$, aromatic proton), $8.54(1 \mathrm{H}, \mathrm{m}$, aromatic proton), $8.67(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}, \mathrm{NH}($ Phe $)$).

Nap-L-Phe-(S)-ProCO-NH-cHx (21): Yield 78.5\%; Rf $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1\right)$; mp $181 \sim 184^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{23}-53.5^{\circ}\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) ;$ FAB-MS $m / z \quad 526$ $(\mathrm{M}+\mathrm{H})^{+}, 399,302,274,225,155,127,70 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.06 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$, $\mathrm{CHaHb}(\mathrm{cHx})), 1.54 \sim 2.06\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}\right.$ (cHx), $\mathrm{CH}_{2} \mathrm{CHaHb}$ (ProCO)), 2.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (Pro$\mathrm{CO})$), $3.16(1 \mathrm{H}, \mathrm{dd}, J=5.6,13.5 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), c a$. $3.17(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$), 3.26(1 \mathrm{H}, \mathrm{dd}$, $J=7.3,13.5 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})$), $3.66 \sim 3.86(2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHaHb}, \mathrm{N}-\mathrm{CH}), 5.22(1 \mathrm{H}$, ddd, $J=5.6,7.3,7.6 \mathrm{~Hz}$, $\alpha-\mathrm{CH}(\mathrm{Phe})), 5.39(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.6 \mathrm{~Hz}, \mathrm{NCHCOCO})$, $6.82(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 7.21(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, NH (Phe)), ca. $7.14 \sim 8.31$ (12 H , m, overlapping, Ph , naphthyl).

Acr(2-Fur)-L-Phe-(S)-ProCO-NH-cHx (22): Yield 92.4%; Rf $0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right) ; \mathrm{mp} 90 \sim 92^{\circ} \mathrm{C}$ (powder); $[\alpha]_{\mathrm{D}}^{26}-53.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; FAB-MS m / z $492(\mathrm{M}+\mathrm{H})^{+}, 365,268,240,225,121,70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta 1.02 \sim 1.46\left(5 \mathrm{H}, \mathrm{m}, \quad \mathrm{CH}_{2} \times 2\right.$, $\mathrm{CHaHb}(\mathrm{cHx})), 1.56 \sim 2.04\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}\right.$ (cHx), $\mathrm{CH}_{2} \mathrm{CHaHb}$ (ProCO)), 2.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (Pro$\mathrm{CO})$), $3.03(1 \mathrm{H}, \mathrm{dd}, J=5.9,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), c a$. $3.06(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$), 3.14(1 \mathrm{H}, \mathrm{dd}, J=$ $7.6,13.7 \mathrm{~Hz}, \beta$-CHaHb(Phe)), $3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb})$, $3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 5.08(1 \mathrm{H}, \mathrm{ddd}, J=5.9,7.6,8.3 \mathrm{~Hz}$, $\alpha-\mathrm{CH}(\mathrm{Phe})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=5.9,8.8 \mathrm{~Hz}, \mathrm{NCHCOCO})$, $6.25(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}$, olefinic proton), $6.43(1 \mathrm{H}, \mathrm{m}$, aromatic proton), $6.45(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}($ Phe $)), 6.52$ $(1 \mathrm{H}, \mathrm{m}$, aromatic proton), $6.79(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH})$, $7.20 \sim 7.37(5 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.33(1 \mathrm{H}, \mathrm{d}$, $J=15.6 \mathrm{~Hz}$, olefinic proton), $7.43(1 \mathrm{H}, \mathrm{m}$, aromatic proton).
$\mathrm{cHx}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$ Phe- (S)-ProCO-NH-cHx (23): Yield
85.9%; Rf $0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right) ; \mathrm{mp} 71 \sim 74^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{28}-30.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$); FAB-MS $m / z 510$ $(\mathrm{M}+\mathrm{H})^{+}, 383,286,258,225,223,70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77 \sim 0.95(2 \mathrm{H}, \mathrm{m}, \mathrm{cHx}$ protons), $1.05 \sim 1.51\left(11 \mathrm{H}, \mathrm{m}, \mathrm{cHx}\right.$ protons, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right)$, $1.55 \sim 2.04\left(13 \mathrm{H}, \mathrm{m}, \mathrm{cHx}\right.$ protons, $\mathrm{CH}_{2} \mathrm{CHa} \mathrm{Hb}(\mathrm{ProCO})$), $2.12\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (Pro$\mathrm{CO})$), $2.94(1 \mathrm{H}, \mathrm{dd}, J=6.4,13.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), c a$. $3.07(1 \mathrm{H}, \mathrm{m}$, overlapping, NCHaHb$), 3.08(1 \mathrm{H}, \mathrm{dd}, J=$ $7.3,13.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b$ (Phe)), $3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb})$, $3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 4.97(1 \mathrm{H}, \mathrm{ddd}, J=6.4,7.3,7.8 \mathrm{~Hz}$, $\alpha-\mathrm{CH}(\mathrm{Phe})), 5.32(1 \mathrm{H}, \mathrm{dd}, J=5.9,8.8 \mathrm{~Hz}, \mathrm{NCHCOCO})$, $6.18(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe})), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $\mathrm{NH}), 7.19 \sim 7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\mathrm{Ac}(\mathrm{PhO})$-L-Phe- (S)-ProCO-NH-cHx (24): Yield 77.5%; Rf $0.53\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right) ; \mathrm{mp} 77 \sim 79^{\circ} \mathrm{C}$ (crystal); $[\alpha]_{\mathrm{D}}^{23}-26.3^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right.$); FAB-MS $m / z 506$ $(\mathrm{M}+\mathrm{H})^{+}, 379,282,254,225,70 ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.10 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx})\right)$, $1.54 \sim 2.05\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{CHaHb}(\mathrm{cHx}), \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (ProCO)), $2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}(\mathrm{ProCO})$), $2.96(1 \mathrm{H}, \mathrm{dd}$, $J=6.6,13.9 \mathrm{~Hz}, \beta-\mathrm{CH} a \mathrm{Hb}(\mathrm{Phe})), 3.14(1 \mathrm{H}, \mathrm{dd}, J=6.9$, $13.9 \mathrm{~Hz}, \beta-\mathrm{CHa} H b$ (Phe)), ca. 3.14 ($1 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{NCHaHb}), 3.61 \sim 3.84(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b, \mathrm{~N}-\mathrm{CH}), 4.41$, $4.43\left(2 \mathrm{H}, \mathrm{ABq}, J=14.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CO}\right), 5.06(1 \mathrm{H}$, ddd, $J=6.6,6.9,8.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.33(1 \mathrm{H}, \mathrm{dd}, J=5.9$, $8.6 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), c a$. $6.76 \sim 7.40(11 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{Ph} \times 2, \mathrm{NH}(\mathrm{Phe}))$.

N -(4-Chlorobenzyl)succinamoyl-L-prolinol (32)

To the 29 ka ($1.021 \mathrm{~g}, 4.23 \mathrm{mmol}$) was added L-prolinol $(0.430 \mathrm{~g}, 4.25 \mathrm{mmol})$ and $\mathrm{HOBt}(1.142 \mathrm{~g}, 8.45 \mathrm{mmol})$ in DMF (10 ml). EDC $\cdot \mathrm{HCl}(1.135 \mathrm{~g}, 5.92 \mathrm{mmol})$ was added under ice cooling, and the mixture was stirred in an ice bath for 2 hours and at room temperature for 6.5 hours. The mixture was diluted with EtOAc $(100 \mathrm{ml})$, and was washed with 4% aq NaHCO_{3}, saturated aq $\mathrm{NaCl}, 1 \%$ aq citric acid and saturated aq NaCl (each 100 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave 32 as a syrup, $0.941 \mathrm{~g}(68.6 \%)$: Rf $0.58\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\right.$ $\mathrm{AcOH}, 18: 2: 1) ;$ FAB-MS $m / z 325(\mathrm{M}+\mathrm{H})^{+}, 307,224$, $184,125,102,70 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52 \sim$ $2.13\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHaHbCH}{ }_{2}\right.$ (pyrrolidinyl)), $2.47 \sim 2.77(5 \mathrm{H}$, $\mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl), $\mathrm{CH}_{2} \times 2$ (Suc)), $3.40 \sim 3.73(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.17(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 4.36(1 \mathrm{H}, \mathrm{dd}$, $J=5.6,14.9 \mathrm{~Hz}, \mathrm{Ph}(4-\mathrm{Cl}) \mathrm{CHaHb}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=5.6$, $14.9 \mathrm{~Hz}, \mathrm{Ph}(4-\mathrm{Cl}) \mathrm{CHa} H b), 4.86(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 6.43(1 \mathrm{H}$, brt, NH), $7.14 \sim 7.39(4 \mathrm{H}, \mathrm{m}$, aromatic protons).
N-(4-Chlorobenzyl)succinamoyl-L-prolinal (1)
A mixture of $32(0.940 \mathrm{~g}, 2.89 \mathrm{mmol})$, pyridinium trifluoroacetate $(0.279 \mathrm{~g}, 1.44 \mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}(1.665 \mathrm{~g}$, 8.69 mmol), anhydrous DMSO (5 ml) and benzene (5 ml) was stirred at room temperature for 16 hours. The reaction mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{ml}$), and the mixture was washed with water (50 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by silica gel column chromatography with

EtOAc-MeCN (50:1~5:1) to give an amorphous solid of 1, $0.527 \mathrm{~g}(56.4 \%)$: Rf 0.53 ($\mathrm{EtOAc}-\mathrm{MeOH}, 9: 1$); FAB-MS $m / z 323(\mathrm{M}+\mathrm{H})^{+}, 289,224,182,125,100,70$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.80 \sim 2.16(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \times 2$ (pyrrolidinyl)), $\quad 2.44 \sim 2.81\left(4 \mathrm{H}, \mathrm{m}, \quad \mathrm{CH}_{2} \times 2\right.$ (Suc)), $3.40 \sim 3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.24 \sim 4.50(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}(4-\mathrm{Cl}) \mathrm{CH}_{2}, \mathrm{NCHCOCO}\right), 6.78(1 \mathrm{H}$, br, NH$), 7.20(2 \mathrm{H}$, m , aromatic protons), $7.28(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Boc-L-Phe-L-prolinol (33)

33 was obtained, in a manner similar to that described in the preparation of 32, by coupling reaction of Boc-L-Phe ($444.9 \mathrm{mg}, 1.68 \mathrm{mmol}$) with L-prolinol (169.0 mg , 1.67 mmol). The product was purified by silica gel column chromatography with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{AcOH}, 100: 2\right.$: $0.3 \sim 100: 4: 0.3$) to give 33 as a syrup, 438.5 mg (75.3%): Rf $0.44\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}, 95: 5: 1\right) ; \mathrm{FAB}-\mathrm{MS} m / z$ $349(\mathrm{M}+\mathrm{H})^{+}, 297,275,249,102,70,57 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), c a .1 .43(1 \mathrm{H}, \mathrm{m}$, overlapping, $3-\mathrm{CHaHb}$ (pyrrolidinyl)), $1.66(2 \mathrm{H}, \mathrm{m}$, 4- CH_{2} (pyrrolidinyl)), $1.94(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{CHaHb}$ (pyrrolidinyl)), $2.62(1 \mathrm{H}, \mathrm{dt}, J=7.3,10.3 \mathrm{~Hz}, \mathrm{NCHaHb}), 2.96(1 \mathrm{H}$, $\mathrm{dd}, J=9.3,12.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}($ Phe $)), 3.05(1 \mathrm{H}$, dd, $J=5.4,12.7 \mathrm{~Hz}, \beta$ - $\mathrm{CHa} H b$ (Phe) $), 3.26 \sim 3.63(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCHaHb}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.16(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 4.65(1 \mathrm{H}, \mathrm{ddd}$, $J=5.4,8.3,9.3 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.37(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, NH), $7.18 \sim 7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

$\mathrm{Bz}(3-\mathrm{PhO})$-L-Phe-L-prolinol (34)

34 was obtained, in a manner similar to that described in the preparation of 31a, by coupling reaction of trifluoroacetate salt of deprotected $33(0.606 \mathrm{mmol})$ with 3-phenoxybenzoic acid ($137.0 \mathrm{mg}, 0.640 \mathrm{mmol}$). The product was purified by silica gel column chromatography with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 100: 1 \sim 80: 1\right)$ to give 34 as an amorphous solid, 232.4 mg (86.3%): Rf 0.40 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 445(\mathrm{M}+\mathrm{H})^{+}$, $344,316,197,102 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{CHaHb}$ (pyrrolidinyl)), $1.70(2 \mathrm{H}, \mathrm{m}, 4-$ CH_{2} (pyrrolidinyl)), $1.94(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{CHaHb}$ (pyrrolidinyl)), $2.68(1 \mathrm{H}, \mathrm{dt}, J=7.3,10.0 \mathrm{~Hz}, \mathrm{NCHaHb}), 3.13(1 \mathrm{H}$, dd, $J=9.3,12.7 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.20(1 \mathrm{H}, \mathrm{dd}$, $J=5.4,12.7 \mathrm{~Hz}, \beta-\mathrm{CHa} H b$ (Phe) $), 3.33 \sim 3.55(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.67(1 \mathrm{H}, \mathrm{dt}, J=6.3,10.0 \mathrm{~Hz}, \mathrm{NCHa} H b), 4.18$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}), 4.22(1 \mathrm{H}, \mathrm{br}$ s, overlapping, OH$), 5.13$ $(1 \mathrm{H}, \mathrm{ddd}, J=5.4,9.3,9.3 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 7.01(2 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.13(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}$, aromatic protons), $7.21 \sim 7.41(8 \mathrm{H}, \mathrm{m}$, aromatic protons), $7.46(2 \mathrm{H}, \mathrm{m}$, aromatic protons).

$\mathrm{Bz}(3-\mathrm{PhO})$-L-Phe-L-prolinal (3)

A mixture of $\mathbf{3 4}(216.4 \mathrm{mg}, 0.487 \mathrm{mmol})$, anhydrous DMSO (2.6 ml) and $\mathrm{Ac}_{2} \mathrm{O}(0.92 \mathrm{ml}, 9.74 \mathrm{mmol})$ was stirred at room temperature for 22 hours. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ and stirred for 1 hour. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml} \times 3)$, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After
removal of the solvent, the product was purified by silica gel column chromatography with hexane-EtOAc (2:1~ $1: 1)$ to give an amorphous solid, 85.5 mg . This solid was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - $\mathrm{EtOAc}(40: 1 \sim 5: 1$) to give an amorphous solid of 3, 46.4 mg (21.5%): Rf $0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right.$, 2:1); FAB-MS $m / z 443(\mathrm{M}+\mathrm{H})^{+}, 344,316,197 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.71(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{CHaHb}($ pyrrolidinyl) $), 1.77 \sim 1.93(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CHaHb}, 3-\mathrm{CHaHb}($ pyrrolidinyl)), $1.97(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{CHaHb}$ (pyrrolidinyl)), 2.98 $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 3.17(1 \mathrm{H}, \mathrm{dd}, J=7.8,13.2 \mathrm{~Hz}$, $\beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.20(1 \mathrm{H}, \mathrm{dd}, \quad J=6.4,13.2 \mathrm{~Hz}, \beta-$ CHaHb (Phe)), $3.70(1 \mathrm{H}, \mathrm{dt}, J=6.6,10.3 \mathrm{~Hz}, \mathrm{NCHaHb})$, $4.40(1 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CHCHO}), 5.15(1 \mathrm{H}$, ddd, $J=6.4,7.8$, $7.8 \mathrm{~Hz}, \alpha-\mathrm{CH}($ Phe $)$), $7.01(2 \mathrm{H}, \mathrm{m}$, aromatic protons), 7.13 $(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}$, aromatic protons), $7.18 \sim 7.50(10 \mathrm{H}, \mathrm{m}$, aromatic protons), $9.35(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CHO})$.

References

1) Yoshimoto, T.; R. C. Orlowski \& R. Walter: Postproline cleaving enzyme. Identification as serine protease using active site specific inhibitors. Biochemistry 16: 2942~2948, 1977
2) Walter, R.; H. Shlank, J. D. Glass, I. L. Schwartz \& T. D. Kerenyi: Leucylglycinamide released from oxytocin by human uterine enzyme. Science 173: 827~829, 1971
3) Koida, M. \& R. Walter: Post-proline cleaving enzyme. Purification of this endopeptidase by affinity chromatography. J. Biol. Chem. 251: 7593~7599, 1976
4) Taylor, W. L. \& J. E. Dixon: Catabolism of neuropeptides by a brain proline endopeptidase. Biochem. Biophys. Res. Commun. 94: 9~15, 1980
5) Orlowski, P. C.; E. Wilk, S. Pearce \& S. Wilk: Purification and properties of prolyl endopeptidase from rabbit brain. J. Neurochem. 33: 461~469, 1979
6) Soeda, S.; M. Ohyama, N. Yamakawa, H. Shimeno \& A. Nagamatsu: Two molecular species of proline endopeptidase in human plasma, isolation and characterization. Chem. Pharm. Bull. 32: 4061~4069, 1984
7) Hersh, L. B. \& J. F. Mckelvy: Enzymes involved in the degradation of thyrotropin releasing hormone (TRH) and luteinizing hormone releasing hormone (LH-RH) in bovine brain. Brain Res. 168: 553~564, 1979
8) Burbach, J. P. H.; G. L. Kovacs, D. De Wied, J. W. Van Nispen \& H. M. Greven: A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221: $1310 \sim 1312,1983$
9) De Wied, D.; O. Gaffori, J. M. Van Ree \& W. De. Jong: Central target for the behavioural effects of vasopressin neuropeptides. Nature 308: 276~278, 1984
10) Weingartner, H.; P. Gold, J. C. Ballenger, S. A. Smallberg, R. Summers, D. R. Rubinow, R. M. Post \& F. K. Goodwin: Effects of vasopressin on human memory functions. Science 211: 601~603, 1981
11) Ishiura, S.; T. Tsukahara, T. Tabira, T. Shimizu, K. Arahata \& H. Sugita: Identification of a putative amyloid A4-generating enzyme as a prolyl endopeptidase. FEBS Lett. 260: 131~134, 1990
12) WILK, S. \& M. Orlowski: Inhibition of rabbit brain prolyl endopeptidase by N-benzyloxycarbonyl-prolyl-prolinal, a
transition state aldehyde inhibitor. J. Neurochem. 41: 69~75, 1983
13) Saito, M.; M. Hashimoto, N. Kawaguchi, H. Shibata, H. Fukami, T. Tanaka \& N. Higuchi: Synthesis and inhibitory activity of acyl-peptidyl-pyrrolidine derivatives toward post-proline cleaving enzyme; A study of subsite specificity. J. Enzyme Inhibition 5: 51~75, 1991
14) Nishikata, M.; H. Yokosawa \& S. Ishir: Synthesis and structure of prolinal-containing peptide, and their use as specific inhibitor of prolyl endopeptidase. Chem. Pharm. Bull. 34: 2931~2936, 1986
15) Yoshimoto, T.; K. Kawahara, F. Matsuhara, K. Kado \& D. Tsuru: Comparison of inhibitory effects of prolinal-containing peptide derivatives on prolyl endopeptidase from bovine brain and Flavobacterium. J. Biochem. 98: 975~979, 1985
16) Yoshimoto, T.; Kado, F. Matsuhara, N. Koriyama, H. Kaneto \& D. Tsuru: Specific inhibitors for prolyl endopeptidase and their anti-amnesic effect. J. Pharmaco-bio-Dyn. 10: 730~735, 1987
17) Arai, H.; H. Nishioka, S. Nima, T. Yamanaka, Y. Tanaka, K. Yoshinaga, N. Kobayashi, N. Miura \& Y. Ikeda: Synthesis of prolyl endopeptidase inhibitors and evaluation of their structure-activity relationships: In vivo inhibition of prolyl endopeptidase from canine brain. Chem. Pharm. Bull. 41: 1583~1588, 1993
18) Tanaka, Y.; S. Niwa, H. Nishioka, T. Yamanaka, M. Torizuka, K. Yoshinaga, n. Kobayashi, Y. Ikeda \& H. Aral: New potent prolyl endopeptidase inhibitors: Synthesis and structure-activity relationships of indan and tetralin derivatives and their analogues. J. Med. Chem. 37: 2071~2078, 1994
19) Tsutsumi, S.; T. Okonogi, S. Shibahara, S. Ohuchi, E. Hatsushiba, A. A. Patchett \& B. G. Christensen: Synthesis and structure-activity relationships of peptidyl α-keto heterocycles as novel inhibitors of prolyl endopeptidase. J. Med. Chem. 37: 3492~3502, 1994
20) Aoyagi, T.; M. Nagai, K. Ogawa, F. Kofima, M. Okada, T. Ikeda, M. Hamada \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase, produced by Streptomyces viridochromogenes MH534-30F3. I. Taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiotics 44: 949~955, 1991
21) Nagai, M.; K. Ogawa, Y. Muraoka, H. Naganawa, T. Aoyagi \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase, produced by Streptomyces viridochromogenes MH534-30F3. II. Structure determination and inhibitory activities. J. Antibiotics 44: 956~961, 1991
22) Tsuda, M.; Y. Muraoka, M. Nagai, T. Aoyagi \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase. III. Optical resolution of 3-amino-2hydroxyvaleric acid and absolute configuration of poststatin. J. Antibiotics 49: $281 \sim 286,1996$
23) Tsuda, M.; Y. Muraoka, M. Nagai, T. Aoyagi \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase. V. Endopeptidase inhibitory activity of poststatin analogues. J. Antibiotics 49: 890~899, 1996
24) Tsuda, M.; Y. Muraoka, M. Nagai, T. Aoyagi \& T. Takeuchr: Poststatin, a new inhibitor of prolyl endopeptidase. VI. Endopeptidase inhibitory activity of poststatin analogues containing pyrrolidine ring. J. Antibiotics 49: 900~908, 1996
25) Pfitzner, K. E. \& J. G. Moffatt: A new and selective oxidation of alcohols. J. Am. Chem. Soc. 85: 3027~3028, 1963
26) Albright, J. D. \& L. Goldman: Dimethyl sulfoxide-acid anhydride mixtures. New reagents for oxidation of alcohols. J. Am. Chem. Soc. 87: 4214~4216, 1965
27) Toda, M.; S. Ohuchida \& H. Ohno (Ono Pharmaceutical Co., Ltd.): Novel prolinal derivatives procedure for their preparation, pharmaceutical compositions containing them, and their use as prolyl endopeptidase inhibitors. Jpn. Kokai 156957 ('89), June 20, 1989 [CA 109: 210889s,

1988]
28) Mimoto, T.; J. Imai, S. Tanaka, N. Hattori, S. Kisanuki, K. Akail \& Y. Kiso: KNI-102, a novel tripeptide HIV protease inhibitor containing allophenylnorstatine as a transition-state mimic. Chem. Pharm. Bull. 39: 3088~ 3090, 1991
29) Hoekstra, W. J.; S. S. Sunder, R. J. Cregge, L. A. Ashton, K. T. Stewart \& Chi-Hsin R. King: Large-scale synthesis of anticoagulant decapeptide MDL 28050. Tetrahedron 48: 307~318, 1992

